

#### **Economics of Biomass to Energy**

Donald L. Grebner

Mississippi State University, Department of Forestry

#### **Mississippi's Forest Resources**

#### Mississippi

Total land area (million ac): 30
 Population (million) 3
 Total Forest area (million ac): 18.5
 Forest cover (%): 62
 Standing Volume (billion ft<sup>3</sup>): 23

#### **General Introduction**

Wood-based bioenergy has several economic, environmental, and energy security benefits



#### **Overall Research Framework**

Feedstock availability estimates
Logging costs
Willingness to harvest
Economic impact assessments



Photos: Katarzyna Grala

Photo: Katarzyna Grala

# Woody biomass feedstock availability

#### **Feedstock Availability Estimates**

 How much woody biomass feedstock is available?

- Logging residues
- Small-diameter trees
- Mill residue
- Urban wood waste

![](_page_5_Picture_6.jpeg)

### **Feedstock Inventory Analysis**

![](_page_6_Figure_1.jpeg)

# **Feedstock Empirical Framework**

![](_page_7_Figure_1.jpeg)

#### **Sources of information**

- Logging residues, FIA TPO databases (1995, 1997, and 2002)
- *Small-diameter trees*, MIFI, FIA
- *Mill residues,* FIA, state
   SUIVEYS (Garrard and Leightley 2005)
- Urban waste, MS DEQ, US census
- *Production costs,* Timber Mart-South, local reports

![](_page_8_Figure_6.jpeg)

Available at http://www.mifi.ms.gov/mission.htm

#### Results

#### Standing stocks

![](_page_9_Figure_2.jpeg)

![](_page_9_Figure_3.jpeg)

#### **Feedstock Availability**

#### Available biomass per year: 4 million dry tons

![](_page_10_Figure_2.jpeg)

![](_page_10_Figure_3.jpeg)

#### **Primary Conclusion**

→ About 4 million dry tons of woody biomass are available each year in MS

 $_{\rightarrow}$  It can generate about 1,000 MW of electricity or 320 millions of gallons of biofuel

#### Photo: Rob

1/11/19 11-50

# Logging Costs

# Logging Costs

- How much does it cost to recover and haul woody biomass to a processing facility?
  - Geographic Information System (GIS)
     Monte Carlo Simulation

# **Procurement Zones**

- ArcGIS Network
- Analyst
- Mill locations
- O Procurement area
  - 30 miles
- Ounty-level volumes

![](_page_14_Figure_7.jpeg)

#### **Biomass Production Costs**

| Costs                                       | Logging<br>residues | Small-diameter<br>trees | Mill<br>residues | Urban<br>waste |
|---------------------------------------------|---------------------|-------------------------|------------------|----------------|
| Harvest (\$/dry ton)                        | 5.82                | 12.66                   | 0.00             | 0.00           |
| Transportation                              |                     |                         |                  |                |
| Fixed (\$/dry ton)                          | 6.96                | 6.96                    | 6.96             | 6.96           |
| Incremental (\$/dry ton/mile)               | 0.17                | 0.17                    | 0.17             | 0.17           |
| Cost (50mile-radius) (\$/dry ton)           | 15.46               | 15.46                   | 15.46            | 15.46          |
| Profit to logger (\$/dry ton)               | 3.19                | 4.22                    | 2.32             | 2.32           |
| Residual stumpage value (\$/dry ton)        | 4.70                | 5.99                    | 0.00             | 0.00           |
| Delivery price (\$/dry ton)                 | 29.17               | 38.33                   | 17.78            | 17.78          |
| Chipping cost (\$/dry ton)                  | 5.06                | 5.06                    | 0.00             | 5.06           |
| Selling, disposal / separating (\$/dry ton) | 0.00                | 0.00                    | 4.20             | 5.51           |
| Sum of costs (\$/dry ton)                   | 34.23               | 43.39                   | 21.98            | 28.35          |

Source: Timber Mart-South and other sources.

#### **Monte Carlo Simulation**

#### Forecast: Logging residues-Costs

Edit View Forecast Preferences Help

20,000 Trials

![](_page_16_Figure_4.jpeg)

#### 19,983 Displayed

- 🗆 ×

| Statisti         | с        |                | Fit: Be | ta    |          | Forecast value |           |    |
|------------------|----------|----------------|---------|-------|----------|----------------|-----------|----|
| Trials           |          |                |         |       |          | 20,00          |           |    |
| Mean             |          |                |         | 40    | .15      |                | 40.       | 15 |
| Median           |          |                |         | - 39  | .47      |                | 39.       | 40 |
| Mode             |          |                |         | 36    | .20      |                |           |    |
| Standard Devia   | ation    |                |         | 4     | .84      |                | 4.        | 84 |
| Variance         |          |                |         | 23    | .43      |                | 23.       | 44 |
| Skewness         |          |                |         | 0.5   | 105      |                | 0.51      | 05 |
| Kurtosis         |          |                |         | 2     | .45      |                | 2.        | 45 |
| Coeff. of Variab | ility    |                |         | 0.12  | 206      | 6 0.12         |           |    |
| Minimum          |          | 32.52          |         |       | .52      | 29.9           |           | 99 |
| Maximum          |          |                |         | 54    | .97      | 54             |           | 96 |
| Mean Std. Erro   | ſ        |                |         |       |          | 0.             |           | 03 |
| Ranked by: Ko    | Imogorov | /-Sm           | imov    |       |          |                |           |    |
| Distribution     | A-D      |                | Chi-Squ | are   | K        | (-S            |           |    |
| Beta             | 99.73    | 301            | 394.    | 6134  |          | .0135          | Minimu    |    |
| Gamma            | 50.4     | 176            | 986.    | 8764  |          | .0317          | Location  |    |
| Triangular       | 96.03    | 358            | 1,036.  | 8956  |          | .0366          | Minimu    | _  |
| Max Extreme      | 75.9     | 283            | 1,419.  | 0858  | .0390    |                | Likeliest |    |
| Weibull          | 71.9     | 611 1,169.8424 |         | .0462 | Location |                |           |    |
| Lognormal        | 129.70   | 667            | 2,029.  | 1848  |          | .0569          | Mean=4    | •  |
| •                |          |                |         |       |          |                | ► ►       |    |

# **Expected Logging Costs**

(50-mile procurement radius and plant capacity at 52 million gallons of biofuel per year)

Logging residues

![](_page_17_Picture_3.jpeg)

\$40 / dry ton

![](_page_17_Picture_5.jpeg)

Small-diameter trees

\$49 / dry ton

![](_page_17_Picture_7.jpeg)

Mill residues

\$31 / dry ton

Urban waste

![](_page_17_Picture_10.jpeg)

\$36 / dry ton

![](_page_17_Figure_12.jpeg)

#### Willingness to harvest

 Are forest landowners willing to harvest woody biomass?

 Non-industrial private landowners (100 acres and greater)

#### Woody Biomass Availability

- NIPF Landowners responsible for about 76% of total wood production and own approximately 80% of timber lands (Bentley et al. 2005)
- Will they harvest???
- A mail survey was designed to obtain data on landowner preferences and harvesting decisions

![](_page_19_Picture_4.jpeg)

www.tx.nrcs.usda.gov

#### Methods – Survey Design

| Attributes                | Scenario 1<br>(Standard Clearcut) | Scenario 2 | Scenario 3 | Scenario 4 |
|---------------------------|-----------------------------------|------------|------------|------------|
|                           |                                   |            |            |            |
| Biofuel produced          | no                                | yes        | yes        | yes        |
|                           |                                   |            |            |            |
| Clean harvest site        | no                                | yes        | yes        | yes        |
|                           |                                   |            |            |            |
| Decrease fire & pest risk | no                                | yes        | yes        | yes        |
|                           |                                   |            |            |            |
| Site prep required        | intensive                         | minimal    | minimal    | minimal    |
|                           |                                   |            |            |            |
| Price received at harvest | \$3000/ac                         | \$3000/ac  | \$3200/ac  | \$2800/ac  |

Appropriate sample size was calculated at 2,560 for the approximate 300,000 NIPF landowners in MS.

Hypothetical forest: 100 acres mature loblolly pine to be clearcut

#### **Results – Survey Response**

Total response rate- 703 (28.8%)

Usable response
 – 511 (20.96%)

![](_page_21_Figure_3.jpeg)

#### **Results – Model Comparison**

 Comparison of predicted and observed frequencies of landowner decisions from the 3 ordered multinomial logit models

|                    | MODEL 1 (V2V1)<br>(Bioenergy (no price<br>change) vs. Traditional) |            | MODEL 2 (V3<br>(Bioenergy (wi<br>change) vs. Tra | 3V1)<br>ith price<br>iditional) | MODEL 3 (V4V1)<br>(Bioenergy (with revenue<br>loss) vs. Traditional) |            |
|--------------------|--------------------------------------------------------------------|------------|--------------------------------------------------|---------------------------------|----------------------------------------------------------------------|------------|
|                    | % Predicted                                                        | % Observed | % Predicted                                      | % Observed                      | % Predicted                                                          | % Observed |
| 0 (Less likely)    | 2.32                                                               | 2.74       | 2.41                                             | 2.94                            | 24.55                                                                | 25.44      |
| 1 (Equally likely) | 35.97                                                              | 36.4       | 25.46                                            | 26.61                           | 44.37                                                                | 42.47      |
| 2 (More likely)    | 61.71                                                              | 60.86      | 72.13                                            | 70.45                           | 31.09                                                                | 32.09      |
| *511 observations  |                                                                    |            |                                                  |                                 |                                                                      |            |

#### **Results – Summary**

- Older landowners with larger landholdings were less likely to prefer the bioenergy scenarios
- Higher-educated landowners who were financially motivated, considered habitat management an important goal, and thought global climate change was an important issue, were more likely to prefer the bioenergy utilization scenario over the standard clearcut

#### Methods: Choice Experiment Survey Design

Sample size: 2,438 landowners Number of returned questionnaires: 703 Adjusted response rate: 28.8% Non-response bias analysis

| Harvest Attributes                   | Harvest Plan A        | Harvest Plan B                  | Harvest Plan C |
|--------------------------------------|-----------------------|---------------------------------|----------------|
| Woody biomass utilization            | 95%                   | 0%                              | -              |
| Environmental quality effect         | Substantial decrease  | Slight decrease                 | -              |
| Site preparation/cleanliness of site | No site prep required | Intensive site prep<br>required | -              |
| Price received per acre              | \$3000/ac             | \$3000/ac                       | -              |
|                                      | Α                     | В                               | No harvest     |

Choosing to harvest means clear-cutting 100 acres of planted pine forestland

#### **Results: Nested Logit Models**

Returned questionnaires: 703 (28.8%) Usable questionnaires: 520 (21.3%) 85.7% of landowners chose to harvest timber

| Attributes                    | Association | Implied WTA |
|-------------------------------|-------------|-------------|
| Woody biomass Utilization:    |             |             |
| 95%                           | Positive**  | -141.70     |
| 70%                           | Positive    | -14.99      |
| Environmental quality effect: |             |             |
| SUBSTANTIAL                   | Negative**  | 116.16      |
| SLIGHT                        | Positive**  | -59.71      |
| Site prep required:           |             |             |
| INTENSIVE                     | Negative**  | 150.08      |
| MINIMAL                       | Positive**  | -51.18      |
| PRICE                         | Positive**  |             |
| AGE                           | Positive**  |             |
| AGE2                          | Negative**  |             |
| EDUCATION                     | Negative*   |             |
| INCOME                        | Negative**  |             |

#### Results

- Harvesting plan intend to utilize 95% woody biomass was preferred over those having no utilization (0%)
- Timber harvesting plan leading to substantial environmental quality loss was not preferred over base category
- Landowners preferred harvesting plan that resulted only in slight environmental quality loss
- While landowners did not prefer plans that required intensive site preparation, a modest site preparation requirement was acceptable

#### **Concluding Remarks**

 Nevertheless, as more than 85% of landowners were willing to supply woody biomass, Mississippi has great potential for woodbased bioenergy.

#### **Mill Residuals**

#### O How much mill residual exists and what is available for bioenergy use?

![](_page_27_Picture_2.jpeg)

Photo: planetgreen.discovery.com

# **Results of Mill Survey**

Population Size: 458 mills Number of returned questionnaires: 99 Adjusted response rate of survey: 21.6% Non-response bias analysis was conducted

- 54% were primary mills, 28% were secondary, and 18% had both facilities
- Monthly woody residue volume was 208,490 tons; 92% was contributed by primary mills
- 69% of mill residues was internally used, 30% was sold, and 1% was given away

#### **Concluding Remarks**

- As most of the available woody residues in the state is sold, entrepreneurs might need to pay a competitive feedstock price to operate wood-based bioenergy facility in Mississippi
- Appropriate location of wood-based bioenergy industry should be an important consideration to ensure low cost wood-based bioenergy production
- Earlier estimates were low

# **Urban Wood Waste**

O How much urban wood waste exists and how much is recoverable?

- Class I & II rubbish sites
- Industrial sites
- Municipal sites
- Composting sites

#### **Results**

Population Size: 208 Number of survey respondents: 62 Adjusted response rate: 29.8% Non-response bias analysis

Surveyed facilities included:

- Class I rubbish sites: 43%
- Class II rubbish sites: 26%
- Other (industrial, municipal, transfer, composting): 31%
- Total wood waste was 392,864 tons annually
- Total wood waste recoverable was 48%

# **Concluding Remarks**

Most material is not used
 Several issues evolve around what is recoverable and what is not
 No existing markets

![](_page_32_Picture_2.jpeg)

![](_page_33_Picture_0.jpeg)

# Economic Impact Assessment

KEEP CLEA

#### Methods

- O The Impact Analysis for Planning (IMPLAN) model was used for economic impact analysis of wood pellet, bio-oil, and methanol industries
- IMPLAN reported direct, indirect and induced economic impacts
- Direct Impacts explain the immediate changes in the production of an economic activity
- Indirect impacts report on the cumulated impacts attributed to inter-industry spending
- Induced impacts are the ripple impacts in different sectors of an economy due to changes in household spending patterns

#### Economic Impacts of Wood Pellet Industry (75,000 dry tonne/yr)

| Activities    | Direct | Indirect | Induced | Total | Type SAM |
|---------------|--------|----------|---------|-------|----------|
| Construction  |        |          |         |       |          |
| Employment    | 15     | 5        | 27      | 47    | 3.09     |
| Output (MM\$) | 2.34   | 0.65     | 2.75    | 5.75  | 2.45     |
| Operation     |        |          |         |       |          |
| Employment    | 19     | 20       | 43      | 82    | 4.32     |
| Output (MM\$) | 6.64   | 1.27     | 4.46    | 12.37 | 1.86     |

|               | Economic Impacts of bio-oil facility (66,255 dry tonne/yr) |          |         |       |          |
|---------------|------------------------------------------------------------|----------|---------|-------|----------|
| Activities    | Direct                                                     | Indirect | Induced | Total | Type SAM |
| Construction  |                                                            |          |         |       |          |
| Employment    | 67                                                         | 26       | 30      | 122   | 1.82     |
| Output (MM\$) | 9.71                                                       | 2.73     | 3.06    | 15.50 | 1.60     |
| Operation     |                                                            |          |         |       |          |
| Employment    | 53                                                         | 24       | 35      | 112   | 2.11     |
| Output (MM\$) | 7.92                                                       | 1.72     | 3.64    | 13.20 | 1.68     |

#### **Economic Impacts of Methanol Industry (730,000 dry tonne/yr)**

| Activities    | Direct | Indirect | Induced | Total  | Type SAM |
|---------------|--------|----------|---------|--------|----------|
| Construction  |        |          |         |        |          |
| Employment    | 886    | 243      | 393     | 1,522  | 1.72     |
| Output (MM\$) | 129.68 | 28.53    | 40.36   | 198.57 | 1.53     |
| Operation     |        |          |         |        |          |
| Employment    | 243    | 205      | 346     | 795    | 3.27     |
| Output (MM\$) | 47.48  | 13.44    | 35.48   | 96.40  | 2.03     |

Economic Impacts of all three industries on Mississippi economy based on per tonne of biomass

| Industry    | Total (\$MM) | Per Unit (\$) |
|-------------|--------------|---------------|
| Wood Pellet | 12.37        | 164.93        |
| Bio-oil     | 13.27        | 200.38        |
| Methanol    | 96.4         | 132.03        |

#### **Discussion and Conclusion**

- While methanol based gasoline industry had the highest impacts, its economic impact per ton biomass use was least among all three industries
- O Wood pellet industry has the highest employment multiplier indicating that it would most contribute to the local economy
- O Wood pellet industry relies on the biomass from primary wood processing facilities and it would be less likely to compete with other facilities for biomass

# **Overall Concluding Remarks**

- Mississippi has great potential for bioenergy due to availability of mill residues and landowner willingness to harvest biomass
- Landowners and mill owners are in need of information related to bioenergy
- Wood-based bioenergy industry would likely contribute state economy by generating employment and new economic opportunities

#### Acknowledgements

Funding Sources:

- MSU Department of Forestry
- MSU Forest and Wildlife Research Center
- MSU Sustainable Energy Research Center (Energy Institute)
- U.S. Department of Energy
- CRES Wood Utilization Research Special Grants

Individual contributors:

 Drs. Gustavo Perez-Verdin, David Jones, Anwar Hussain, Ian Munn, Stephen Grado, Robert Grala, James Henderson, Omkar Joshi, Zhimei Guo, Marcus K. Measells, Steven Gruchy, Puskar Khanal, and many others.