Biomass Conversion Technologies

Prashanth R. Buchireddy, Ph.D.

University of Louisiana at Lafayette

16th August 2018 Jackson, MS

Potential to produce 732 Billion Kwh (Appx. 20% of U.S. Power Consumption)

BIOMASS AVAILABILITY IN THE U.S.

Potential Biomass Resources from Energy Crops

Energy crops could be the largest source of biomass, but time and significant changes in agricultural practices will be needed to produce these crops on the scale shown here. © Union of Concerned Scientists 2012; www.ucsusa.org/biomassresources

Biomass Conversion Pathways

Chemical/Biochemical Conversion Routes

Transesterification	 Fats/Oils/Grease Transesterification of fatty acids in the presence of Catalyst/Alcohol Fatty Acid Esters (Biodiesel)/Glycerol
Anaerobic Digestion	 Complex Organic Matter Absence of Oxygen, Microbes Hydrolysis/Acido- Acetogenesis/Methanogenesis Products: Biogas (CH₄ & CO₂)
Fermentation	 Lignocellulosic/Complex Matter Enzymatic Hydrolysis/Biological Conversion/Chemical Conversion of sugars Products: Ethanol/Fuels

Characteristics of Thermal Conversion Routes

Combustion

- Oxidizing Medium: Air
- Excess than Stoichiometric
- Products: Heat and CO₂

Gasification

- Oxidizing Medium: Air/Oxygen
- Equivalence Ratio: 0.3
- Products: Syngas and Heat (CO, H₂), CO₂

Pyrolysis

- Oxidizing Medium: None
- Inert Environment
- Products: Bio-oil, Biochar, Torrefied Biomass

Chemicals and Fuels

(Gasification/Pyrolysis/Biochemical)

Power Generation Technologies

Biomass Gasification

Biomass \rightarrow CO, CO₂, CH₄, C₂H₄, H₂O, C, Tars

Gasifier Rxn Zones

Oxidation:	$C + O_2 \rightarrow CO_2$	393 kJ/mol ●
Partial Oxidation:	$C + 0.5 O_2 \rightarrow CO$	-123 kJ/mol
Boudard Rxn.:	$C + CO_2 \rightarrow 2 CO$	+159 kJ/mol
Water Gas:	$C + H_2O \rightarrow CO+H_2$	+118 kJ/mol
Methane Form.:	$C + 2 H_2 \rightarrow CH_4$	-87 kJ/mol
Methane Ref.:	$CH_4 + H_2O \rightarrow CO + 3 H_2$	+206 kJ/mol
Water Gas Shift:	$CO + H_2O \rightarrow CO_2 + H_2$	-40 kJ/mol
Dry Reforming:	$CH_4 + CO_2 \rightarrow 2 CO + 2 H_2$	+247 kJ/mol

Drying

- Pyrolysis
- Oxidation
- Reduction

Syngas HHV (Btu/scf): 80 - 300 Natural Gas (Btu/scf): 950 - 1000

70 lb/hr Biomass Downdraft Entrained Flow Gasifier

5 MWt Woodchip Bubbling Fluidized Bed Gasifier (Vermont)

Gasifier Type (Selection):

- Acceptable feedstock type and size
- Moisture Sensitivity
- Capacity/Scale (Kw-Mw)
- Syngas Quality and Composition
- End Use
- Carbon Conversion and Efficiency

1 tpd Downdraft Wood Chip Gasifier (Mississippi)

Cleco/UL Lafayette Gasification System

•	Bubbling	Fluidized	Bed
---	----------	-----------	-----

- Atmospheric
- 250 lb/hr.

Features

Gasifier Type

- Semi-Portable
- Air/Oxygen/Steam
- Dual Feed Zones (Wide Feedstock)

Products

- Producer Gas/Syngas
- Power
- Liquid Fuels/Chemicals

Cleco/UL Gasification System

Air Gasification of Pine Chips

Feedstock evaluated till date include mixed hardwood, pine, oriental stranded board, banding board chips.

Feedstock Properties			rties	Operating Conditions	
		and the second second	Feed Rate 94.0 – 131.8 lb/hr		
Proximate Analysis Ultimate Analysis,		ate Analysis,	Moisture Content 11 – 25 %		
%Moisture Content	10 - 13	% Carbon, _{daf}	51.21	Equivalence Ratio 0.26 – 0.35	
% Ash, _{db}	0.45	% Hydrogen, _{daf}	7.27	Bed Temperature 1413 - 1770°F	
% Volatile Matter, _{db}	82.40	% Oxygen, _{daf}	41.92	Eree Board 1287 - 1392°F	
% Fixed	17 15	% Sulfur	0.06	Temperature	
Carbon, _{db}	0.00	Bed Velocity 1.2 – 1.5 ft/s			
		% Nitrogen, _{daf}	0.04	Bed Pressure, psig 0.32 – 2.10 psig	
		HHV, _{daf} (MJ/kg)	20.12	Syngas Production 66 – 79 scfm	

Air Gasification of Pine Chips (Representative Data)

Issues with Cofiring Biomass with Coal

- Heterogeneous (Size & Shape)
- Fibrous (Grindability)
- > Hydrophilic
- Low Energy Density
- Biodegradable
- > High Alkali Metals

Biomass Torrefaction (Mild Pyrolysis)

0.25 ton/day Indirectly Heated Rotary Torrefaction Reactor

Mass and Energy Balance of Pine on Pilot Scale System

Experimental Conditions - T: 313 °C (308-318 °C), RT: 30 minutes, N₂ - 5 l/min.

Solid, Energy Yields and HHV of Torrefied Pine

(Variation with increasing temperature, Pine: (8,926 Btu/lb)

Modified Van Krevelen Diagram Torrefied Pine (Variation with increasing severity)

Grindability

Torrefied Pine (Variation with increasing temperature)

Research Plans/Strategies

afayette.

10

GA OLINE

E IO Unle ded

тм

BIOFUELS

-

SE IN AN DIESEL VEHICLE

B2

USE I

E-85% Ethano

An Introduction to the ENERGY INSTITUTE OF LOUISIANA

The University of Louisiana Lafayette, Louisiana, USA

Organizational Structure

ENERGY RESOURCE DEVELOPMENT

Reservoir Development

Enhanced Oil Recovery

GTL Chemicals

Novel Drilling Methods

Example R&D Interest Areas

Microalgae Biofuels

Green Chemicals

Biocoal

Ethanol

Waste to Watts Processes

TREMENDOUS ON-CAMPUS R&D FACILITY ASSETS

Significant R&D Space & Equipment is On-Campus (over 50,000 sf of R&D laboratories present at UL)

Fracking Research: Performance Optimization Efforts

Optimizing Frack Formations

Newly applied test method that can show researchers how strain relates to the process of fracturing

Large-Scale Testbed at UL for Process Development at the Pilot Scale

- 5 acres R&D facility focusing on pilot-scale evaluation of alternative energy processes
- Over \$12M of capital investment (opened in 2012)
- To date, over \$5M of R&D projects performed in support of industry and government
- Fully equipped analytical laboratory

PHOTOVOLTAIC APPLIED RESEARCH AND TESTING LAB \$4.5M Grant from NRG Lead: Dr. T. Chambers (UL Mechanical Engr.)

PHOTOVOLTAIC APPLIED RESEARCH AND TESTING (PART) LAB PROJECT MANAGERS & DESIGN CONSULTANT

+

HIT

mad

MOBILE DIGESTION PILOT SYSTEM

(biosolids to lipids & other products)

